Improved Object Detection and Pose Using Part-Based Models

نویسندگان

  • Fangyuan Jiang
  • Olof Enqvist
  • Fredrik Kahl
  • Kalle Åström
چکیده

Automated object detection is perhaps the most central task of computer vision and arguably the most difficult one. This paper extends previous work on part-based models by using accurate geometric models both in the learning phase and at detection. In the learning phase manual annotations are used to reduce perspective distortion before learning the part-based models. That training is performed on rectified images, leads to models which are more specific, reducing the risk of false positives. At the same time a set of representative object poses are learnt. These are used at detection to remove perspective distortion. The method is evaluated on the bus category of the Pascal dataset with promising results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthetic 3D Model-Based Object Class Detection and Pose Estimation. (Détection de Classes d'Objets et Estimation de leurs Poses à partir de Modèles 3D Synthétiques)

The present thesis describes 3D model-based approaches to object class detection and pose estimation on single 2D images. We introduce learning, detection and estimation steps adapted to the use of synthetically rendered training data with known 3D geometry. Most existing approaches recognize object classes for a particular viewpoint or combine classifiers for a few discrete views. By using CAD...

متن کامل

Contours Extraction Using Line Detection and Zernike Moment

Most of the contour detection methods suffers from some drawbacks such as noise, occlusion of objects, shifting, scaling and rotation of objects in image which they suppress the recognition accuracy. To solve the problem, this paper utilizes Zernike Moment (ZM) and Pseudo Zernike Moment (PZM) to extract object contour features in all situations such as rotation, scaling and shifting of object i...

متن کامل

Online multiple people tracking-by-detection in crowded scenes

Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...

متن کامل

Analysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model

Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...

متن کامل

بخش‌بندی معنادار مدل‌ سه‌بعدی اجسام بر اساس استخراج برجستگی‌ها و هسته جسم

3D model segmentation has an important role in 3D model processing programs such as retrieval, compression and watermarking. In this paper, a new 3D model segmentation algorithm is proposed. Cognitive science research introduces 3D object decomposition as a way of object analysis and detection with human. There are two general types of segments which are obtained from decomposition based on thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013